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Abstract—    A numerical study of the three-dimensional 

fluid flow has been carried out to determine the effects of the 

transverse aspect ratio, Ay, on the flow structure in lid-driven 

cavities. The numerical method is based on the finite volume 

method and multigrid acceleration. Computations have been 

investigated for several Reynolds numbers, Richardson numbers 

and various aspect ratio values. At a fixed Reynolds number, Re 

= 100, the three-dimensional flow characteristics are analyzed 

considering three transverse aspect ratios, Ay = 1, 0.5 and 0.25. 

The results are presented in terms of distributions of streamlines, 

isotherms and average Nusselt number. We note tha t the heat 

transfer rate increasing by increasing the aspect ratio and the 

Richardson number. 
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I. INTRODUCTION 

 

 In recent years the mixed convection in rectangular or 

square cavities has been investigated by many researchers. 

This attempt is due to the fact that heat transfer in a square 

cavity can be found in many industrial and engineering 

applications such as electronic component cooling, food 

drying process, nuclear reactors etc… Flow and heat transfer 

phenomena caused by buoyancy and shear forces in 

enclosures have been studied extensively in the literature. For 

example, Iwatsu [1] numerically studied three dimensional 

flows in cubical containers. The top moving wall is 

maintained at a higher temperature than the bottom wall. 

Numerical solutions are obtained over a wide range of 

physical parameters, 10
2
 ≤ Re ≤  2×10

3
, 0 ≤ Ri ≤  10 and Pr = 

0.71. Numerical flow visualizations demonstrate the explicit 

effects of Ri as well as Re. Mohamed and Viskanta [2] 

investigated the effects of a sliding lid on the fluid flow and 

thermal structures in a shallow lid-driven cavity. Moallemi 

and Jang [3] studied numerically mixed convective flows in a 

bottom heated square lid-driven enclosure. They investigated 

the effect of Prandtl number on the flow and heat transfer 

process. They found that the effects of buoyancy are more 

pronounced for higher values of Prandtl numbers, and they 

also derived a correlation for the average Nusselt number in 

terms of the Prandtl number, Reynolds number and 

Richardson number. Prasad and Koseff [4] performed an 

experimental investigation of mixed convection flow in a lid-

driven cavity for a different Richardson numbers, ranging 

from 0.1 to 1000. Their results indicate that the overall heat 

transfer rate is a very weak function of the Grashof number 

for the examined range of Reynolds numbers. They have also 

analyzed the mean heat flux values over the entire boundary to 

produce Nusselt number and Stanton number correlations 

which are very useful for design applications. Sharif [5] 

performed a numerical investigation with supplementary flow 

visualization of laminar mixed convective heat transfer in 

two-dimensional shallow rectangular driven cavities of aspect 

ratio 10. The top moving plate of the cavity is set at a higher 

temperature than the bottom stationary plate. Computations 

are reported for Rayleigh numbers ranging from 10
5
 to 10

7
 

while keeping the Reynolds number fixed at 408.21, thus 

encompassing the wide spectrum of dominating forced 

convection, mixed convection, and dominating natural 

convection flow regimes. A numerical study of the three-

dimensional fluid flow has been carried out to determine the 

effects of the transverse aspect ratio, Ay, on the flow structure 

in lid-driven cavities was investigated by Nader [6] and 

Fakher [7]. 

 

The objective of this work is to study the effect of aspect 

ratio, varied from 0.25 to the unity, on the overall structure of 

the flow. Thus, the Richardson number ranging from 0.001 to 

10 were considered. 

 

II. MATHEMATICAL FORMULATION 

II.1. GOVERNING EQUATIONS 

 

 For laminar, incompressible and three-dimensional mixed 

convection, after invoking the Boussinesq approximation and 

neglecting the viscous dissipation, can be expressed in the 

dimensionless form as: 

Continuity equation: 
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Three momentum equations: 

  2

3

1

Re

i ii i i

i

j i i i

u uu u uP
Ri

t x x x x


   
     

     
                       (2) 

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.4, pp. 133-136, 2013

Copyright - IPCO 

PC
Typewriter
133

mailto:benmansournoura@yahoo.fr
mailto:nader_bc@yahoo.fr


Energy equation: 
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Where, u , v and w  are the velocity components in the x, y and 

z directions, respectively, θ  is the temperature and  P  is the 

pressure. ρ is the mass density and g is the gravitational 

acceleration. In Eq. (2), the symbol   stands for the 

Krönecker delta. The chosen scales in Eqs. (1)– (3) are the 

length H , the velocity
0u g H T  , the time 

0

0

H
t

u
   and 

the pressure
2

0 0P u . Further, the non-dimensional 

temperature is defined by   r hot coldT T T T       , where 

the reference temperature is 
 

2

hot cold

r

T T
T


 . The non-

dimensional numbers seen above, Gr, Re, Pr and Ri are the 

Grashof number, Reynolds number, Prandtl number and 

Richardson number, respectively, and they are defined as: 
3
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II.2 INITIAL AND BOUNDARY CONDITIONS 

 No slip condition at bottom and side walls. The upper lid 

has a constant velocity, u0. The horizontal upper lid wall has 

an isothermal condition with temperature, T=TH. The bottom 

wall is at rest and isotherm, i.e., T=TC (TC < TH). Finally, the 

remaining walls are adiabatic (see Fig.1). 

II.3 NUMERICAL PROCEDURE 

 

 In the FORTRAN code, the unsteady Navier–Stokes and 

energy equations are discretized by a second-order time 

stepping finite difference procedure. The procedure adopted 

here deserves a detailed explanation. First, the non-linear 

terms in Eqs. (2) are treated explicitly with a second-order 

Adams–Bashforth scheme. Second, the convective terms in 

Eq. (3) are treated semi implicitly. Third, the diffusion terms 

in Eqs. (2) and (3) are treated implicitly. In order to avoid the 

difficulty that the strong velocity-pressure coupling brings 

forward, we selected a projection method described in Peyret 

and Taylor [9] and Achdou and Guermond [10]. 

 A finite-volume method is implemented to discretize the 

Navier–Stokes and energy equations (Patankar [8], F. 

Moukhalled and M. Darwish [11], Kobayachi and Pereira 

[12]). 

 The advective terms in Eqs. (2) are discretized using a 

QUICK third-order scheme whereas a second-order central 

differencing (Hayase, Humphrey and Greif [13]) is applied in 

Eq. (3). The discretized momentum and energy equations are 

solved employing the red and black successive over relaxation 

method (RBSOR) [14], while the Poisson pressure correction 

equation is solved utilizing a full multi-grid method 

(Hortmann, Peric and Scheuerer [15], M.S. Mesquita and 

M.J.S. de Lemos [16], E. Nobile [17]). If specific details about 

the computational methodology are needed, the reader is 

directed to Ben-Cheikh et al. [18]. Finally, the convergence of 

solutions is assumed when the relative error for each variable 

between consecutive iterations is recorded below the 

convergence criterion ε such that: 
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Here,  represents a dependent variable u, v, w, or θ, the 

indexes i, j, k indicate a grid point, and the index m is the 

current iteration at the grid level. The convergence criterion 

was set to 10
−6

. 

 

III. RESULTS AND DISCUSSION 

  
 In what follows, we will present a detailed analysis of the 

aspect ratio effects on the three dimensional flows in lid-

driven cavity for the steady solution obtained at Re =100.For 

this fixed Reynolds number, the Richardson number is varied 

from 0.001 to 10,  three transverse aspect ratios Ay = 1, 0.5 

and 0.25 are considered. It is worth noting that Ax is 

maintained to 1 in all simulations. In Fig. 2 are presented the 

mid-plane streamlines distributions for designated values of 

Re, Ri and aspect ratio. When Re=100, Ri = 10 and Ay= 1, the 

flow patterns are characterized by three primary recirculating 

counter-rotating vortices. This behavior is primarily due to the 

lid movement that occupies the region near the hot sliding 

wall.   

Re=100 , Ri=0.001 

Ay=0.25 Ay =0.5 Ay=1 

   
Re=100 , Ri=10 

Ay =0.25 Ay =0.5 Ay =1 

   
 

Fig. 2: Stream traces at the mid-plane (y = 0.5) at Re = 100 for 

the three aspect ratio values Ay = 1, 0.5 and 0.25 for Ri = 10 

and 0.001.  

 

 

 In addition, a minor secondary recirculating vortex due to 

buoyancy is observed near the bottom wall. With decrements 

in Ay from the unity to 0.25, the bottom cell becomes feeble 
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and amalgamates with the upper adjacent cell to provide only 

two extensive clockwise and anticlockwise vortices close to 

the walls. When Re=100, Ri = 0.001 and for different aspet 

ratio, a single primary vortex is observed covering most of the 

cavity domain. The intensity of the vortex seems to become 

feeble by lowering the aspect ratio from the unit to 0.25. 

 

 

Re=100 , Ri=0.001 

Ay =0.25 Ay =0.5 Ay =1 

   
Re=100 , Ri=10 

Ay =0.25 Ay =0.5 Ay =1 

   
 

Fig. 3: The isotherm plots 

 

 

 

 Fig. 3 illustrates the influence of varying Re, Ri and aspect 

ratio on the isotherms for the six cases studied. The results 

convincingly indicate that when Ri is set at 10, the isotherms 

exhibit similar trends for different aspect ratio. Consequently, 

the collective behavior attests the impact that Re exerts on 

heat transfer is insignificant. Accordingly, since the buoyancy 

is high (Ri=10), the temperature contours embody a thermally 

stratified situation. 

 

 In other words, the flow is principally dominated by 

buoyancy and the heat transfer is controlled mainly by 

conduction, implying that forced convection due to the lid-

movement is almost absent. The results convincingly indicate 

that when aspect ratio increases to Ay=1 and Ri is feeble, the 

buoyancy effects remain dominant. In contrast, as Ay 

increases to Ay = 1 and Ri is feeble i.e., Ri = 0.001, the results 

indicate the buoyancy effects remain dominant. 

 

 Fig.4. show the average Nusselt number variation with the 

aspect ratio at different Richardson numbers for Re 100. The 

results indicate that the average Nusselt number increases by 

inceasing the aspect ratio from 0.25 to the unit. On the other 

hand, due to the increase in the body force effects with 

increasing Richardson number, a clear increase in the Nusselt 

number with the aspect ratio is noticed. 

 

 Fig.5 and Fig.6 show u and w velocity components 

distribution along the centerline of cubic cavity for Re = 100 

and for different Richardson number. The result show that for 

Ri = 0.001, we see that the effect of the ratio is negligible 

from Ay = 0.5 to 0.25. Against for the large number of 

Richardson, we find that there is no difference between Ay=1 

and Ay =0.5. 
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Fig.4. Variation in the average Nusselt number with aspect 

ratio at different Richardson numbers for Re 100. 
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Fig.5. u velocity components distribution along the centerline 

of cubic cavity for Re = 100 at Ri = 0.001and Ri = 10 
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Fig.6. w velocity components distribution along the centerline 

of cubic cavity for Re = 100 at Ri = 0.001and Ri = 10 

 

IV. CONCLUSION 

 

In this study, we present a detailed analysis on the effect of 

aspect ratio Ay ranging from 0.25 to 1 in a lid driven cavity 

The top moving lid of the cavity is maintained at a constant 

temperature, while the vertical walls are thermally insulated. 

The working fluid is air so that the Prandtl number equates to 

0.71. The Reynolds number equal to 100 and Richardson 

number ranging from 0.001 to 10. Parametric studies of the 

effect of the mixed convection parameter, Richardson number 

on the fluid flow and heat transfer have been performed. Flow 

and heat transfer characteristics, streamlines, isotherms and 

average wall Nusselt number are presented for whole range of 

Richardson number considered. The results indicate that for 

Ri = 10 The number of cells decreases with the aspect ratio 

and the isotherms exhibit thermal stratification for different 

aspect ratio and for Ri = 0.001, the current lines present a 

similar pattern and isotherms shows that the buoyancy effect 

is dominant.  Also, a significant increase of the Nusselt 

number with the aspect ratio is observed. 
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